If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+18u-30=0
a = 2; b = 18; c = -30;
Δ = b2-4ac
Δ = 182-4·2·(-30)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{141}}{2*2}=\frac{-18-2\sqrt{141}}{4} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{141}}{2*2}=\frac{-18+2\sqrt{141}}{4} $
| 3y+-2/3=180 | | c=8=-20 | | -3=8x+0.75 | | 2y-50=115 | | 9x-2+6x=2x+4-4x | | 9w-1/9=7 | | v=14=10 | | s=2=-4 | | -7y-1=12 | | k=6=3 | | b/3+13=17 | | -171=19c | | 2n-7=3n- | | -12x+27=11 | | -15=r-(-1) | | 1/4x-11=-1 | | -1=r-(-1) | | 3x+30=4x-30 | | 4400-3x=322.75 | | 7x+13=6x+4 | | 3x+30+4x-30=180 | | x=5=-7 | | X-2=4x-+10 | | -2/9*x=0 | | n-(-10)=24 | | 7/9*x-x-3+3=0 | | m-(-19)=3 | | 2x5x-12=0 | | 1/9x+2+2/3x+1=x+3 | | -3x^2-18x+26=0 | | 2.2=z÷57= | | 12/720=4/h |